The number of protein folds and their distribution over families in nature.
نویسندگان
چکیده
Currently, of the 10(6) known protein sequences, only about 10(4) structures have been solved. Based on homologies and similarities, proteins are grouped into different families in which each has a structural prototype, namely, the fold, and some share the same folds. However, the total number of folds and families, and furthermore, the distribution of folds over families in nature, are still an enigma. Here, we report a study on the distribution of folds over families and the total number of folds in nature, using a maximum probability principle and the moment method of estimation. A quadratic relation between the numbers of families and folds is found for the number of families in an interval from 6000 to 30,000. For example, about 2700 folds for 23,100 families are obtained, among them about 33 superfolds, including more than 100 families each, and the largest superfold comprises about 800 families. Our results suggest that although the majority of folds have only a single family per fold, a considerably larger number of folds include many more families each than in the database, and the distribution of folds over families in nature differs markedly from the sampled distribution. The long tail of fold distribution is first estimated in this article. The results fit the data for different versions of the structural classification of proteins (SCOP) excellently, and the goodness-of-fit tests strongly support the results. In addition, the method of directly "enlarging" the sample to the population may be useful in inferring distributions of species in different fields.
منابع مشابه
On the Origin of Protein Superfamilies and Superfolds
Distributions of protein families and folds in genomes are highly skewed, having a small number of prevalent superfamiles/superfolds and a large number of families/folds of a small size. Why are the distributions of protein families and folds skewed? Why are there only a limited number of protein families? Here, we employ an information theoretic approach to investigate the protein sequence-str...
متن کاملEstimating the total number of protein folds.
Many seemingly unrelated protein families share common folds. Theoretical models based on structure designability have suggested that a few folds should be very common while many others have low probability. In agreement with the predictions of these models, we show that the distribution of observed protein families over different folds can be modeled with a highly-stretched exponential. Our re...
متن کاملFold Designability, Distribution, and Disease
Fold designability has been estimated by the number of families contained in that fold. Here, we show that among orthologous proteins, sequence divergence is higher for folds with greater numbers of families. Folds with greater numbers of families also tend to have families that appear more often in the proteome and greater promiscuity (the number of unique "partner" folds that the fold is foun...
متن کاملA unifold, mesofold, and superfold model of protein fold use.
As more and more protein structures are determined, there is increasing interest in the question of how many different folds have been used in biology. The history of the rate of discovery of new folds and the distribution of sequence families among known folds provide a means of estimating the underlying distribution of fold use. Previous models exploiting these data have led to rather differe...
متن کاملFrom Proteins to Organisms
Introduction One of the most intriguing problems in molecular biology is the origin of the vast population diversity of protein families. Following the assumption that the protein families are populated at random, one would expect a multinomial distribution of the family populations.5 However, it has been discovered6-9 that distribution of the family populations is by far nonexponential, but ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2004